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As devices to control spin currents using the spin-orbit interaction are proposed and implemented, it is
important to understand the fluctuations that spin-orbit coupling can impose on transmission through a quan-
tum dot. Using random matrix theory, we estimate the typical scale of transmitted charge and spin currents
when a spin current is injected into a chaotic quantum dot with strong spin-orbit coupling. These results have
implications for the functioning of the spin transistor proposed by Schliemann, Egues, and Loss. We use a
density matrix formalism appropriate for treating arbitrary input currents and indicate its connections to the
widely used spin-conductance picture. We further consider the case of currents entangled between two leads,
finding larger fluctuations.
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I. INTRODUCTION

There has been much recent progress in the creation and
control of spin currents. There have been demonstrations and
proposals for producing spin-polarized currents both with1–7

and without time reversal symmetry �TRS�.8,9 Recent
progress in measuring and controlling the spin-orbit coupling
in semiconductor heterostructures10–12 promises to enable a
range of spintronic applications relying on the spin-orbit in-
teraction. As such devices are considered and developed, it is
important to understand the role of coherent mesoscopic
fluctuations in these systems. In this paper, we consider the
effects of injecting either a spin-polarized current or a pure
spin current into a two-dimensional �2D� ballistic region
with strong spin-orbit coupling and consider the scale of the
fluctuations of charge and spin currents transmitted through
such a device.

For example, these effects could be important for the
Schliemann-Egues-Loss spin field effect transistor �SFET�
proposal.13 In such a SFET, spin-polarized electrons are in-
jected into a region �e.g., a diffusive wire or a quantum dot�
with spin-orbit coupling. In the “on” state of the device, the
Rashba14 and k-linear Dresselhaus15,16 spin-orbit couplings
are tuned to be equal, and the spin polarization does not
decay as the electrons cross the region, but instead undergoes
a controlled rotation.13 In the “off” state, the Rashba and
k-linear Dresselhaus strengths are tuned to be different, and
the spin polarization is lost while traversing the region due to
the random spin rotations experienced by electrons travers-
ing different trajectories through the dot. Ideally, the on state
has a fully spin-polarized current exiting the device and the
off state has no spin polarization in the exit current. For
coherent 2D quantum systems, however, the decay of the
spin current in the off state relies on having a sufficiently
large number of channels to average together. In the one-
dimensional �1D� limit, with two ideal 1D wires, each having
only one propagating mode, a fully spin-polarized current
injected into the first wire is a pure state, so the transmitted
current must have a spin pointing in some direction; this fact
implies that no reduction in spin-polarization is possible in
the coherent 1D limit. Other limitations to the SFET proposal

have been simulated by Shafir et al.17

In this paper, we discuss the general problem of coherent
propagation of currents through quantum dots, focusing on
the relationship of incident to exit spin-polarization of the
currents. For the case of 2D ballistic chaotic scattering re-
gions with strong spin-orbit interaction, we use random ma-
trix theory to give analytic results for the expected values of
spin-polarization in the exit currents. Once we can describe
the ingoing current in terms of a density matrix, all of the
conclusions will follow. Thus, the problem is generally bro-
ken into two parts: first, find the relevant input density matrix
for the system of interest; second, propagate that density ma-
trix to find the output currents and polarizations. We choose
the density matrix formalism to describe the input currents to
the quantum dots, as it is flexible enough to describe any
current in the noninteracting system. As an important ex-
ample, we describe how to construct the density matrices
representing currents produced from potentials applied to
�possibly spin split� reservoirs. We go beyond this model and
also consider injection of spin currents entangled between
the two leads, finding larger fluctuations in this case. Similar
work in a three-terminal geometry was considered in Ref. 18.
The case of unpolarized input currents was considered in
Ref. 6.

II. SETUP

We consider a quantum dot attached to two ideal leads
through quantum point contacts �QPCs�. There are N, M
open spin-degenerate channels in the left, right QPCs, re-
spectively, and we let K=N+M. We take a basis for the
propagating states in the ideal leads normalized to unit flux
in each channel, as usual. We consider noninteracting spin
1/2 particles, which are coherently scattered by the quantum
dot, which we describe using an S-matrix. Given a density
matrix w representing the current into the dot from the K
channels, the output current is described by density matrix
wout=SwS†.
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With K open channels, the S-matrix S can be represented by
a 2K�2K matrix of complex numbers. In systems with time
reversal symmetry, it is convenient to consider S to be a K
�K matrix of 2�2 matrices. Any 2�2 matrix can be writ-
ten as a linear combination of the four Pauli matrices, but it
is convenient to consider the basis ��0 , i�1 , i�2 , i�3�, where
the �i are the Pauli spin matrices. In this basis, a 2�2 matrix
q=q0�0+ iq� ·�� , with q0 ,q� �C, which is also called a
quaternion.19 Then q is defined to have a complex conjugate
q�=q0��0+ iq�� ·�� , dual qR=q0�0− iq� ·�� , and Hermitian con-
jugate q†=qR�. The Hermitian conjugate is the same as the
standard Hermitian conjugate of a complex matrix, but the
complex conjugate is not the same. For an S-matrix of
quaternions, we define complex conjugate �S��ij = �Sij��, dual
�SR�ij = �Sji�R, and Hermitian conjugate S†=SR�. This repre-
sentation is convenient because for time reversal invariant
systems, S=SR. The quaternion representation has the stan-
dard convention that tr�S�=�iSii

0, which is half of the trace of
the equivalent complex matrix.

A. Constructing w from chemical potentials

Consider for the moment not two leads attached to the dot
but K leads, each with one open channel and connected to its
own reservoir with adiabatic, reflectionless contacts. Model-
ing the reservoirs as paramagnetic, each reservoir can be spin
split along its own quantization axis with each spin band
separately in equilibrium, having its own chemical potential
�m

� , where m� �1. . .K� labels the channel and �
� �0,x ,y ,z� indicates the charge and spin potentials.20,21

There has been some confusion22 on the consistency of de-
fining this chemical potential, so we give an example. If
reservoir m is spin split along axis x̂, then �m

0 is the average
chemical potential in the reservoir, 2�m

x is the chemical po-
tential difference between spin-up and spin-down electrons
quantized along x̂, and �m

y,z=0. In general, if the quantization
axis is n̂ and the chemical potential difference along that axis

is 2�s, then �i=�s�n̂ · î�. Such spin-split chemical potentials

can be realized, for example, by optical excitation in hetero-
structures, in an environment with inelastic relaxation much
faster than spin relaxation.1,20,23

We assume the leads have negligible spin-orbit coupling
and spin relaxation, so there is a well-defined spin current in
the leads. In the absence of inelastic processes, we can con-
sider the current carried by particles with energy �. For sim-
plicity, we assume the number of open channels does not
vary over the range of � considered here. Then the particle
currents flowing in from each channel are represented by the
quaternion density matrix

w̃nm��� = �nm�f�� − �n
0� − �� · �� n

s f��� − �n
0�� , �1�

where f��� is the Fermi function at temperature T, and we
assume that �n

s �max�T ,	�, where 	 is the mean orbital
level spacing in the quantum dot without leads attached, and
the prime indicates the derivative with respect to �.

The charge current in the n-th channel of particles with
energy � is

jn
0��� = 2 tr�Pn�w̃��� − w̃out�����

e

h
, �2�

where −e is the electron charge, h is Planck’s constant, and
Pn is the projection matrix onto the n-th channel �i.e.,
�Pn�ab=�an�bn�. Similarly, the spin current in the n-th chan-
nel is

jn
i ��� = 2 tr�Pn�i�w̃��� − w̃out�����

e

2

. �3�

We choose units in which e=h=2
, so Eq. �3� can describe
both charge and spin currents if we let �0 be the identity.

The currents are the physical objects in the system, and
we note that the currents are unaffected by adding any mul-
tiple of the identity to w̃���, since w̃out=Sw̃S† and S is uni-
tary. We can thus use the density matrix to represent the
currents, but we do not need to maintain tr w=1 or even that
w has positive eigenvalues. In the case where there are only
two leads, we can subtract f��−�2

0� from w, giving

w��� = ��f�� − �1
0� − f�� − �2

0�� − f��� − �1
0��� · �� 1

s

− f��� − �2
0��� · �� 2

s 	

�− f��� − �0���0 − f��� − �1

0��� · �� 1
s

− f��� − �2
0��� · �� 2

s 	 , �4�

where �0= ��1
0+�2

0� /2 and ��0=�1
0−�2

0. Note that if ��0

=0 then the average chemical potential in both leads is the
same, so no net charge flows and w is traceless.

If we consider an energy range in which the S-matrix does
not vary �i.e., the linear response regime,24 where ���

� �T ,	��, then we can represent the currents by integrating
over energy in the density matrix, giving

w = ���0 + �� · �� 1
s

�� · �� 2
s 	 �5�

and

jn
� = 2 tr�Pn���w − wout�� . �6�
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Spin-polarized injection from ferromagnetic contacts does
not immediately map onto the chemical potential formalism.
It is clear that if a ferromagnet is in equilibrium with a wire,
connected by adiabatic contacts, it will not produce a spin
current in the wire, since adiabaticity requires that the lowest
energy levels remain filled. For practical injection of spin-
polarized currents from a ferromagnet to a normal metal sys-
tem, a tunnel barrier at the contact is the most common form
of non-adiabaticity.8,25

We can consider a situation where the ferromagnet injects
into a semiconductor, which serves as the reservoir for a wire
connected to our quantum dot. If we consider the case where
the semiconductor has an energy relaxation time �e much
shorter than the spin relaxation time �s, then the spin-
polarized current injected from the ferromagnet into the res-
ervoir can relax to two independent distributions with a spin-
split chemical potential. This is the same assumption used for
optical excitation of spin-split chemical potentials. We can
then use the formulation in terms of potentials as described
above.

The tunnel barrier at the ferromagnet introduces a second
complication, as it implies that the ingoing current in the
wire contains particles injected directly from the reservoir
and also particles reflected from the scattering region and
reflected back from the barrier. The input density matrix thus
needs to be determined self-consistently, including the ef-
fects of both reflections. Such effects can be included sys-
tematically, by using the Poisson kernel26 rather than the cir-
cular ensemble described below and also including the TRS-
breaking effects of the ferromagnetic scattering. For a
sufficiently large reservoir in the semiconductor, this reflec-
tion can represent a small perturbation to the input currents,
and the procedure described below will be a good approxi-
mation.

B. Connection to spin conductances

We can write a generalized Büttiker-type conductance
equation27

jl
� = �

k,�
Glk

���k
� − 2Ml�l

�, �7�

where Glk
�� is the conductance from lead k to lead l and spin

� to � and 2Ml is the number of modes, including spin, in
lead l. The absence of equilibrium charge or spin currents
�since there is no spin-orbit coupling in the leads� implies

�
k

Glk
�0 − 2Ml��0 = 0. �8�

Further, the conservation of charge current implies that

�
l

Glk
0� = 2Mk��0. �9�

Specializing to the case of two leads with N and M modes
in the left and right leads with potentials �L

�, �R
� , respec-

tively, we can express Glk
�� simply in terms of the S-matrix.

Setting �R
� =0 and �L

� =��
, Eq. �7� gives

jR
� = GRL

�
 . �10�

Equation �5� says that w= �
�
 1N

0M
�=�
PL, and by Eq. �6� we

have jR
� =2 tr���PRS�
PLS†�=GRL

�
. Similarly, GRR
�


=2 tr���PRS�
PRS†�. If the system is time reversal invariant,
then S=SR, which imposes some relations between the dif-
ferent conductance matrix elements. Since tr�AR�=tr�A�, we
have the Onsager-like relations

Glk
�� = h�h�Gkl

��, �11�

for k , l=R ,L where h�= �1,−1,−1,−1�.
We thus see that we can express all of the Gij

�� in terms of
traces over appropriate density matrices multiplying
S-matrices. We will consider the current in the right lead
associated with the input density matrix w, defined as

jw
� � 2 tr���PR�SwS† − w�� , �12�

which is proportional to the outgoing current in the right lead
after injection represented by w, where the sign is chosen so
that outgoing currents to the right are positive.

C. Purity of w

We will see that the coherence properties of the currents
are important, so it is interesting to consider when w repre-
sents a pure state. Ordinarily, density matrices are defined
�with quaternion trace convention� so 2 tr �=1, and � is pure
if �2=�. In our open system, normalization is a choice, and
we set 2 tr w= t, where t gives the total current incident on
the dot. We can also add any multiple of the identity to w
without affecting the physical currents. Taking both these
factors into account, w represents a pure state only if there is
a real number 
 such that

� w − 
1

2 tr�w − 
1�
2

=
w − 
1

2 tr�w − 
1�
. �13�

This condition implies that the K�K quaternion matrix w
represents a pure state only if

�1� w2= tw,
�2� w2= −t

2K−1w, or
�3� w is invertible and ∃
�R such that

w−1 =
w − �t − 2
�K − 1��1
− 
�t − 
�2K − 1��

.

III. RANDOM MATRIX THEORY

Though for any particular quantum dot it is difficult to
determine the full scattering matrix exactly, if there is a small
number of open channels in the leads connected to the dot,
mesoscopic fluctuations should produce an appreciable spin
polarization in the exit current. We can understand this by
considering that the current from one of the input channels
has some probability to exit into each of the M exit channels
after undergoing some spin rotation. In the chaotic strong
spin-orbit limit, there is no correlation between the entry and
transmitted spin polarizations. Though on average the trans-
mitted spin polarization is zero, in any particular case there
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will still be some residual polarization in some direction in
the exit lead. When there is only a small number of channels
in the entrance and exit, these residual polarizations can be
large. We will find the root mean square �rms� spin currents
in the right lead by averaging over the ensemble of coherent
cavities with strong spin-orbit coupling. These fluctuations
are due to mesoscopic interference effects inside the quan-
tum dots. We are primarily interested in the time-reversal
invariant case, but we will present results valid with and
without TRS.

We consider coherent elastic scattering of noninteracting
electrons with no spin-relaxation in the leads. We consider
the chaotic limit for the quantum dot, in which the electron
dwell time �d=2
� /K	 is much longer than the Thouless
time �Th=Ld /vF, where Ld is a typical linear distance across
the dot, vF is the Fermi velocity, and 	=2
�2 /mA is the
mean orbital level spacing in the quantum dot, with m the
effective mass and A the area of the dot. We further assume
the strong spin-orbit limit, where the spin-orbit time �so is
much less than �d. We assume that all of the channels have
perfect coupling into the quantum dot.

We are interested in the properties of the current in the
right lead. For an input density matrix w, in addition to jw

� ,
we define the outgoing current

jout
� = 2 tr���PRSwS†� , �14�

and the current due only to the input state

jin
� = 2 tr���PRw� �15�

so jw
� = jout

� − jin
� . The charge current is jw

0 and the spin current
is j�w. We define jw

s = �j�w�. The polarization of the current in
the right lead is p�w= j�w / jw

0 . A small number of parameters of
the input current are sufficient to describe the effects of any
w in a two-terminal configuration. In particular, we define

t = 2 tr w �16�

C = 2 tr�w2� �17�

D� = 2 tr���PRwR� = �jin
� �R �18�

E� = 2 tr���PRwRwR� �19�

F� = 2 tr���PRwRPR��wR� , �20�

where superscript R is the quaternion dual, t is the total flux
incident on the dot, C is a measure of the coherence of the
current, D� gives the incident charge/spin current from the
right lead, E� and F� are more measures of coherence. By
adding a multiple of 1 to w, we can choose D0=2 tr�PRw�
=0, and all results below assume this choice. Note that if
current is incident only from the left lead, then D�=E�=F�

=0.
We take averages over the uniform ensemble of all

S-matrices in the strong spin-orbit limit, either with TRS
�called the circular symplectic ensemble—CSE� or without
TRS �called the circular unitary ensemble—CUE�.19,26 Such
averaging is readily performed experimentally by small
changes of the shape of a quantum dot;28 the rms fluctuations

also give a typical value to be expected for any one chaotic
dot. An external magnetic field can easily break TRS, mov-
ing between these ensembles. A convenient formalism for
performing such averages was worked out by Brouwer and
Beenakker.29 From that work, we need two averages. In the
quaternion representation, for f1=tr�ASBS†� for A ,B constant
K�K quaternion matrices,

�f1�CSE =
1

2K − 1
�2 tr A tr B − tr�ARB�� �21�

�f1�CUE =
1

K
tr A tr B . �22�

The other average we need is of f2=tr�ASBS†�tr�ASBS†�
for A ,B constant K�K quaternion matrices. We find29

�f2�CSE =
1

2�S
� �K − 1� � 8�tr A�2�tr B�2 + 2 tr�A2�tr�B2�

+ 4�tr�ABR��2 − 8 tr�A�tr�B�tr�ABR�

− 2 tr�AABRBR� � − � 2�tr A�2tr�B2� + tr�A2��tr B�2

− 4 tr�A�tr�ARB2� − 4 tr�B�tr�A2BR�

+ 4 tr�A�tr�B�tr�ABR� + tr�ABRABR� + tr�AABRBR� � �
�23�

�f2�CUE =
1

�U
�4K�tr A�2�tr B�2 + K tr�A2�tr�B2� − tr�A2�

��tr B�2 − �tr A�2tr�B2�� , �24�

where �S=K�2K−1��2K−3� and �U=K�4K2−1�.
We consider the mean and fluctuations of jw

� . Using Eq.
�21�,

�jw
� � = �jout

� � − jin
� �25�

�jout
� � = ��0

2tM

2K − �S
− �S

D�

2K − 1
, �26�

where �S=1 for averages over the CSE and �S=0 for aver-
ages over the CUE. The relevant fluctuations to study are of
	jw

� = jw
� − �jw

� �, which satisfy

��	jw
� �2� = ��jout

� �2� − �jout
� �2 �27�

Using Eqs. �23� and �24�, we find

��jout
� �2� =

1

�
�M��0�4Mt2�K − �S� − 2MC + 4�SE0� − Mt2

+ �K − �S��2MC + 2�SD�2� − �S�E0�2K − 1� − F��� ,

�28�

where �=�S, �U for the CSE, CUE, respectively. We note
that ��jout

� �2�CUE does not depend on D, E, or F. Combining
this result with Eq. �26�,
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��jout
� �2� − �jout

� �2

=
1

�
�M��0�Mt2�1 + �S�

K − �S/2
− 2MC + 4�SE0


+ 2MC�K − �S� − Mt2 + �S��D��22K2 − 3K + 2

2K − 1

− E0�2K − 1� − F�
� �29�

Equation �29� is the main result of this work, and we will
now look at its implications in some special cases. First, an
arbitrarily polarized current incident from the left lead, as
can be readily created by optical methods. Second, a pure
spin current uniformly distributed between the leads. Third, a
pure state pure spin current, with entanglement between the
spin and location degrees of freedom.

A. Case 1: Spin-polarized current

For any current incident exclusively from the left, the
total current t and the parameter C are sufficient to describe
mean and rms currents in the right lead. We consider the
input current represented by

w1 =
1

2N
�1N�t�0 + s� · �� �

0M
	 , �30�

where s� is the polarization magnitude and direction of the
input spin current. Note that t can be positive, negative, or
zero, depending on the direction of the charge current
through the device. For �s��= �t�, the current is fully polarized.

For the density matrix of Eq. �30�, C= �t2+s2� /2N, and
D=E=F=0. Applying Eq. �26�, the mean spin current in the
right lead is zero and the average charge current is �jw

0 �
=2tM / �2K−�S�. The reduction of �jw

0 � as TRS is broken
��S→0� is the signature of weak antilocalization.26,30,31 The
rms spin current in the right lead is

��jw
s �2� = 3

M��M − �S�t2 + �K − �S�s2�
N�

. �31�

The fluctuations in the charge current are

��	jw
0 �2� =

M

�
��4MN − �S�4M −

1

N
	
t2 + �1 −

�S

N
	s2�

In the case of an unpolarized charge current �s=0� with
TRS, spin current in the exit lead is forbidden when M =1
due to the combined effects of time reversal symmetry and
unitarity,6,32,33 as can be seen in Eq. �31�. We can consider a
pure spin current incident from the left by setting t=0. In that
case, we see that

��	jw
0 �2� =

M�N − �S�s2

N�
, �32�

showing the scale of charge currents produced from the pure
spin current. Similar effects have recently been proposed to
measure the spin conductance in a three-terminal geometry.18

We note that ��jw
0 �2�CSE=0 if N=1, showing that a pure spin-

current incident from a single channel cannot produce a net
charge current in the other channels. This is the time reversed
statement of the theorem that with TRS a charge current
cannot produce a spin-polarized current when M =1.

We can further consider the spin-polarization of the exit
current, p�w= j�w / jw

0 . It is clear that �p�w�=0, just as �j�w�=0, but
there is some rms spin polarization of the exit current. If we
approximate �pw

2 �
��jw
s �2� / �jw

0 �2, we can use the above re-
sults to find

�pw
2 � 
 3�K − �S/2�2 t2�M − �S� + s2�K − �S�

�t2MN
. �33�

To test this approximation, we found �pw
2 � by numerically

averaging over the CSE. Matrices drawn from the CSE were
chosen by diagonalizing matrices from the Gaussian unitary
ensemble, as described in Ref. 6. Results are shown in Fig. 1
for the case t=s=1, and it is clear that Eq. �33� agrees very
well with the numerical results �right panel�. The case shown
in the figure is the relevant one for the Schliemann-Egues-
Loss SFET, in which a fully polarized spin current is incident
from one lead. In the off state, which relies on large spin-
orbit coupling, the spin polarization in the exit lead is sup-
posed to be zero. We see in Fig. 1 that even for several open
channels in each lead, we expect to find an appreciable spin
polarization in the output, limiting off-state function.

B. Case 2: Pure spin current from both leads

We consider a pure spin current incident from both leads,
represented by the density matrix

2 4 6 8

<(j
w
s )2>1/2

M
2 4 6 8

<(p
w
s )2>1/2

M
2 4 6 8

0

0.2

0.4

0.6

0.8

1

<j
w
0 >

M

CUE
N=2

N=1
N=2
N=3
N=4

FIG. 1. �Color online� For the fully spin-polarized current rep-
resented by Eq. �30� with t=s=1 and time reversal symmetry, com-
parison of numerical �symbols� and analytical �lines� results for the
mean charge current �left�, rms spin current �middle�, and rms spin
polarization �right� in the exit lead, where M �N� is the number of
channels in the exit �entrance� lead. An average over 50 000
S-matrices from the CSE was performed for each data point. The
lines are from Eqs. �26�, �31�, and �33�. The right panel shows that
the expected spin polarization in the exit lead is still appreciable,
even for several open modes in each of the leads. Also shown are
the equivalent CUE results with N=2, showing that the rms spin
polarization is nearly unchanged by breaking TRS in this case.
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w2 = �1N
�z

2N

− 1M
�z

2M

	 . �34�

This density matrix represents a spin current of +ẑ incident
from the left and a spin current of −ẑ incident from the right,
which together are an incident pure spin current from left to
right with polarization +ẑ. In this case, t=0, C=K /2MN,
D�= �0,0 ,0 ,1�, E�= �1 /2M ,0 ,0 ,0�, and F�= �1,−1,
−1,1� /2M. Though the mean value of the charge current is
zero, since it is as likely for the charge current to flow in as
out, the spin current can produce a mean square charge cur-
rent

��jw
0 �2� =

K

�
�1 − �S

N2 + M2

MNK

 . �35�

We note that when M =N=1, �j0
2�CSE=0, showing that no

charge current can be produced. This result is another impli-
cation of the theorem that, with time reversal symmetry, a
spin current incident in one channel cannot produce a charge
current, combined with a simpler result that coherence and
time reversal symmetry forbid spin-to-charge reflection in a
single channel.

The spin current in the right lead is a combination of the
incident spin current, the reflected spin current from the right
and the transmitted spin current from the left. Together, these
give a mean spin current of

�jw
i � = �0,0,1 − �S

1

2K − 1
	 . �36�

Thus, with TRS, the spin current in the right lead is, on
average, reduced from 1. In the case M =N=1, this reduction
removes 1/3 of the spin current that began in the lead.

The fluctuations around the mean are

��	jw
x,y�2� =

K�K − �S��1 − �S
N

MK
	

N�
�37�

��	jw
z �2� =

K

�K − �S/2�N�
�K2 + �S� �M − 1�K2

M

− K�M + 2 −
1

2M
	 +

3M

2
+

N

K

� �38�

These results, along with confirming numerical simula-
tions, are shown in Fig. 2.

C. Case 3: Pure state pure spin current

We consider entanglement between the spin currents in
the two leads, which is beyond the standard chemical poten-
tial formulation of transport. In particular, consider a pure
state spin current entangled between both leads, rather than
the mixed state spin current of case 2. With M =N=1, we
consider

w3 =
1

2
� �z �x + i�y

�x − i�y − �z
	 �39�

This state has, as in case 2, a pure spin current +ẑ incident
from the left and a pure spin current −ẑ incident from the
right, but the off-diagonal terms of w3 indicate that the spin
currents are entangled. The use of the term “entanglement”
for a one-particle system with internal degrees of freedom is
not universally accepted �see, e.g., Ref. 34 and references
therein�, but here we mean a quantum correlation between
the location of the current and its spin. The density matrix
formalism easily allows consideration of such off-diagonal
correlations between the channel currents. The entanglement
could be produced by passing a current through a beamsplit-
ter produced from quantum dots,35–37 feeding into the two
channels or from spin injection by optical orientation using
entangled photons. The density matrix w3 represents a pure
state by condition 3 of Sec. II C with 
=−1 /2.

In this scenario, t=0, C=3, D�= �0,0 ,0 ,1�, E�

= �3 /2,0 ,0 ,1�, and F�= �1,−1,−1,1� /2. This should be
compared with case 2 in the M =N=1 limit, which is the
same except C=1 and E�= �1 /2,0 ,0 ,0�.

The most significant difference from case 2 is that coher-
ence between the channels allows a charge current to be
produced, even when M =N=1 with TRS. There is still no
mean charge current, but the rms fluctuations are ��jw

0 �2�CSE
1/2

=0.41, ��jw
0 �2�CUE

1/2 =0.45. This rms charge current is much
larger than the results of case 2, even away from M =N=1,
�see Fig. 2, left, and Eq. �36�� indicating that the entangled
spin current is better able to couple into charge current than
is the incoherent spin current. We have normalized w3 to
have �jw

i �= �0,0 ,1−�S /3�, as in case 2. We find fluctuations
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FIG. 2. �Color online� For the pure spin current represented by
Eq. �34�, comparison of numerical �symbols� and analytical �lines�
results for the rms charge current �left�, mean spin current �middle�,
and rms spin current fluctuations �right� in the exit lead, where M
�N� is the number of channels in the exit �entrance� lead. An aver-
age over 50 000 S-matrices from the CSE was performed for each
data point. The lines are from Eqs. �35�–�38�. The left panel shows
that this pure spin current should still be expected to produce sig-
nificant charge currents, with a nonmonotonic dependence on the
number of open channels N and M. Also shown are the equivalent
CUE results with N=2.
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around the mean of ��	jw
i �2�CSE

1/2 = �0.58,0.58,0.62�,
��	jw

i �2�CUE
1/2 = �0.63,0.63,0.63�. With TRS, the fluctuations

are larger along the polarization axis, but not markedly so.
The total spin polarization fluctuations are ��	jw

s �2�CSE
1/2

=1.03, ��	jw
s �2�CUE

1/2 =1.10, which is larger than the mean cur-
rent and equal in scale to the input current jin

s , showing that
coherence between the channels significantly enhances the
mesoscopic fluctuations; this should be compared with Fig. 2
�right panel�. Such large fluctuations entail a significant loss
of knowledge of the quantization axis of the spin current, so
the initially z-polarized current can exit polarized in many
directions.

We note that the density matrix formalism could also be
used to study entanglement produced by passing current
through the quantum dot by considering the correlations
present in the output density matrix.

IV. DISCUSSION

Mesoscopic fluctuations of spin current on passing
through a chaotic ballistic quantum dot can produce large
fluctuations in spin polarization, charge currents from pure
spin currents, and spin currents from charge currents.6 These
predictions for mean and rms currents will be modified by
dephasing and effects of the energy dependence of the
S-matrix. Dephasing processes can be readily added to this
model using the third lead method,38–40 as detailed in Ref. 6.
Dephasing generally reduces the fluctuations in charge and
spin currents and also removes the symmetry that forbids

charge or spin currents at certain values of M and N with
TRS.

If the ingoing current contains particles with energies
varying over a large enough range, the energy dependence of
the S-matrix must be considered as well. The S-matrix is
generally correlated on the energy scale of the level broad-
ening of the quantum dot eigenstates, approximately 	�
=	K /2+�� /2, where �� is the dephasing rate.6,41 If the in-
cident particles have energies that differ by a large amount
compared to the level broadening 	�, as can happen at suf-
ficiently large temperatures or ���, then the mesoscopic fluc-
tuations are suppressed, as there are effectively more open
channels for particles passing through the dot.

Mesoscopic fluctuations producing spin polarized exit
currents could be important for operation of a Schliemann-
Egues-Loss SFET. To avoid this impact on the off-state po-
larization, such a device should have many scattering regions
in parallel or operate in a regime with sufficiently large tem-
perature, bias, or dephasing so as to reduce these mesoscopic
effects.
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